2024 年度

名古屋大学・カセサート大学国際連携生命農学専攻 博士後期課程 ジョイント・ディグリープログラム学生募集要項 (2024 年 4 月入学)

Academic Year 2024
Guidelines for
International Collaborative Program in Agricultural Sciences
between Nagoya University and Kasetsart University
(April 2024 Enrollment)

名古屋大学大学院生命農学研究科
Graduate School of Bioagricultural Sciences
Nagoya University

個人情報の取り扱いについて

出願にあたって提供された住所・氏名・生年月日その他の個人情報は、入学選抜、合格発表、入学手続及びこれらに付随する事項並びに入学後の学務業務における学籍・成績管理を行うためのみに利用します。

また、取得した個人情報は適切に管理し、利用目的以外に使用いたしません。

Treatment of information on individuals (at Nagoya University)

Any information regarding individuals which has been obtained from application documents, shall be used for the purposes of notifications concerning the application in hand, entrance examinations, announcements of results of entrance examinations, enrollment procedures and any other items subsidiary to these situations. It will also be used for the administration of the school register and for academic records connected with student academic affairs after enrollment. Furthermore, any information obtained concerning individuals with be treated appropriately, and shall never be used for any reason other than its administrative purpose.

※不測の事態が発生した場合の諸連絡

災害や感染症の流行等により、試験日程や選抜内容等に変更が生じた場合は、次のホームページ 等により周知しますので、出願前や受験前は特に注意してください。

- ◆ 生命農学研究科受験生向けホームページ
 URL https://www.agr.nagoya-u.ac.jp/jukensei/index.html
- ◇ 連絡窓口

名古屋大学農学部・生命農学研究科 教務学生係

E-mail: kyomu@agr.nagoya-u.ac.jp

- < Changes in examination schedule and procedures due to unforeseen circumstances > The examination schedule and selection measures may be modified in the event of an outbreak of infectious disease or other unforeseen circumstances. Please check the website regularly for the latest notices, especially in the days preceding the application and examination periods.
- Website of Graduate School of Bioagricultural Sciences, Nagoya University (Admission Information)

http://www.agr.nagoya-u.ac.jp/english/admission/index.html

■ Contact info:

Student Affairs Section, Graduate School of Bioagricultural Sciences, Nagoya University

E-mail: kyomu@agr.nagoya-u.ac.jp

1. 概要

自然科学分野における国際的リーダーとなりうる博士人材の育成に向け、一つの大学だけでは提供できない 魅力ある新たな教育プログラムを構築し、修了者には2大学連名で単一の学位を授与することによって当該 学生の能力の高さを世界標準で保証すべく、カセサート大学との国際連携生命農学専攻を設置した。

2. アドミッション・ポリシー

創造的な研究活動によって真理を探究する知的好奇心に満ち、農学分野に関連する基本的な知識と理解力を備える一方で、多様な文化・環境への高い関心と適応力を持ち合わせた人材を求める。環境・文化の異なる2つの大学で共同学位の取得を強く希望し、将来は生命農学分野での専門性を活かし、グローバル社会を牽引するリーダー的人材になるなどのビジョンを持つ者が望ましい。

3. 出願資格

次の(1)~(8)のいずれかの条件を満たす者

(本研究科入学時までに、(1)~(8)のいずれかの条件を満たす見込みの者を含む)

- (1) 修士の学位又は専門職学位を有する者
- (2) 外国において修士の学位又は専門職学位に相当する学位を授与された者
- (3) 外国の学校が行う通信教育における授業科目を我が国において履修し、修士の学位又は専門職学位に相当する学位を授与された者
- (4) 我が国において、外国に大学院の課程を有するものとして当該外国の学校教育制度において位置付けられた教育施設であって、文部科学大臣が別に指定するものの当該課程を修了し、修士の学位又は専門職学位に相当する学位を授与された者
- (5) 国際連合大学本部に関する国際連合と日本国との間の協定の実施に伴う特別措置法(昭和51年法律第72号)第1条第2項に規定する1972年12月11日の国際連合総会決議に基づき設立された国際連合大学の課程を修了し、修士の学位に相当する学位を授与された者
- (6) 外国の学校,上記資格(4)の指定を受けた教育施設又は国際連合大学の教育課程を履修し,博士論文研究基礎力審査に相当するものに合格した者及び合格する見込みの者で,修士の学位を有する者と同等以上の学力があると認められた者
- (7) 文部科学大臣の指定した者 (平成6年文部省告示第123号)

大学を卒業し、又は外国において学校教育における16年の課程を修了した後、大学・研究所等において、2年以上研究に従事した者で、本研究科において、当該研究の成果により、修士の学位を有する者と同等以上の学力があると認めた者

- (注) 7ページの「出願資格(7)による出願について」を参照してください。
- (8) 本研究科において、個別審査により、修士の学位又は専門職学位を有する者と同等以上の学力があると 認めた 24 歳以上の者
 - (注) 8ページの「出願資格(8)による出願について」を参照してください。

4. 募集人員 若干名

5. 出願期間

2023年11月27日(月)~11月30日(木)午後4時まで(郵送必着)

受付時間: 午前9時から午前11時30分まで,午後1時30分から午後4時まで

<u>入学志願者は、出願の前に余裕を持って志望先の研究室へ研究内容等について必ず問い合わせてください。</u>
<a href="mailto:original-color: blue-th-color: blue-th-col

6. 出願書類

提出書類	
(1)入学志願票, 写真票および	本研究科ホームページから所定の様式をダウンロードし、作成してくださ
受験票	い。
(2)写真	出願前3か月以内に撮影のものを、写真票に貼ってください。
(3)成績証明書	学部(教養課程を含む)及び大学院の成績を証明するもの
	※日本語あるいは英語で書かれていない場合は,英訳版を添付してくださ
	ι _ν ,
(4) 修士学位	修士学位取得(修了)証明書又は取得(修了)見込証明書
(修士学位取得証明書)	※名古屋大学大学院生命農学研究科を修了した者は不要です。
	* 中国の大学を卒業した者が出願する際の注意事項
	中国の大学卒業者は,中国政府機関直轄の財団である『教育部学生服务
	与素质发展中心 (CSSD)』から発行される認証書「中国高等教育学位认证
	报告」を印刷し,他の出願書類とともに提出してください。
	認証書発行に関する手続きの詳細については CSSD のホームページ
	(https://xwrz.chsi.com.cn/gateway) で確認してください。
	発行に時間がかかるため、手続きは早めに行ってください。
(5) TOEFL, TOEIC または	出願資格(7)または(8)の者のみ提出してください。
IELTS のスコアシート	「8. 考査実施方法」の「(1)外国語(英語)試験におけるスコアシートの提
	出」を参照してください。
(6)修士論文	修士論文(またはこれに相当する論文)写1篇および要旨(和文または英
	文)3通(修士論文(またはこれに相当する論文)が未完成の場合は,
	4,000 字程度の要旨(3 通)を提出し,完成後 2024 年 12 月 22 日(金)ま
	でに提出してください。)
(7) 受験票返送用封筒 	定形の長形 3 号封筒 (12 × 23 cm) に、受験票を必ず受け取ることができる
	住所を記入して374円切手を貼ってください。
	宛先が海外の場合は、返信に必要な郵便料金の国際返信切手(IRC)を同封 ・・・・・・・・
(0) 双脸不进事	してください。
(8)受験承諾書	官公庁,会社等に在職の場合のみ提してください。 本研究科ホームページから所定の様式をダウンロードし、作成してくださ
	本研究科小一ムペーシから所定の様式をダウンロートし、作成してくださ い。
(9) 履歴書(外国人用)	しい。 日本国籍を有しない者のみ提出してください。
(2) 限距音(77凹入用)	ロ本国籍を有しない自のが提出してくたさい。 本研究科ホームページから所定の様式をダウンロードし、作成してくださ
	い。
	0

	(10) 在	E留カードの写し(両面)	日本国籍を有しない者のみ提出してください。ただし、日本国永住許可を 得ている者は不要です。
-			
	(11)	類型該当性の自己申告	本研究科ホームページから所定の様式をダウンロードし、作成してくださ
	書*		い。
			詳細は,「*「(11) 類型該当性の自己申告書」の提出について」をご確認く
			ださい。

*「(11)類型該当性の自己申告書」の提出について

経済産業省は 2021 年 11 月,「外国為替及び外国貿易法」(以下,外為法)に基づく「みなし輸出」管理の明確化を実施し,法令改正を行いました。

これによって大学における学生への機微技術の提供の一部が外為法の管理対象となることがあり、外国政府や外国の法人等の著しい影響下にある外国人、および邦人であっても外国政府等の強い影響下にある場合には、輸出許可申請が必要となります。

- 1) 大学院への出願時に「類型該当性の自己申告書」(様式1) を提出してください。
 - なお、様式1の自己申告で類型に該当する方は、以下の資料を併せて提出してください。
 - ・外国政府・企業等の機関に雇用されている者:雇用証明書
 - ・外国政府・企業等の機関から個人として受けとる研究資金や奨学金がある場合: 奨学金の受給通知もしくは申請書など
- 2) 大学院入試合格時に「誓約書」を提出していただきます。
- ※ 上記以外に必要な書類がある場合は、別途連絡します。

7. 入学検定料の払込方法

(1) 入学検定料 30,000円

検定料のほかに支払手数料(500円程度)が必要となります。

(2) 払込期間(日本時間)

2023年11月1日以降~2023年11月30日まで

出願期間に限らず入学検定料の支払いを行うことができます。

出願期間を十分に確認した上で、支払いを行ってください。

(3) 払込方法

出願前に、農学部・生命農学研究科教務学生係〔13. その他〕へお問い合わせください。

(4) 入学検定料の返還について

出願書類を受理した後は、納入済みの入学検定料は返還いたしません。ただし、以下に該当する場合は、納入された入学検定料を返還します。なお、返還にかかる振込手数料は差し引かせていただきます。

- ア 入学検定料納入後、出願しなかった場合又は出願が受理されなかった場合
- イ 入学検定料を二重に払い込んだ場合
- ※ 入学検定料の返還は銀行振込で行われます。海外の銀行の口座に返還する場合には、返還 される金額が大きく減額される他、返還に多大な日数を要しますので、入学検定料の納入は 慎重に行ってください。

返還請求方法については、名古屋大学ホームページ(http://www.nagoya-u.ac.jp/)→入学案内→大学院入試→入学検定料の支払について を確認してください。

8. 考查実施方法

(1) **外国語 (英語) 試験におけるスコアシートの提出 (出願資格(7)又は(8)の者のみ提出)** 外国語 (英語) の試験については、TOEFL または TOEIC のスコアによる判定を行います。 ただし、出願資格(1)、(2)、(3)、(4)、(5)、(6)の者は免除します。

試験の方法

TOEFL, TOEIC または IELTS のいずれか 1 つのスコアシートを提出すること。筆記試験は実施しない。

TOEFL, TOEIC または IELTS の得点は以下の方法で算出したものを外国語得点として採用する。

■ TOEFL iBT を利用した場合:

英語得点 = 50 + (TOEFL iBT スコア - 50) × 5/3 (100 点以上は 100 とする)

- TOEFL iBT Home Edition (2020 年の名称は TOEFL iBT Special Home Edition) を利用した場合: 英語得点 = 50 + (TOEFL iBT Home Edition スコア - 50) × 5/3 (100点以上は 100とする)
- TOEFL ITP を利用した場合:

英語得点 = TOEFL ITP スコア× 0.34 - 108 (100 点以上は 100 とする)

■ TOEIC を利用した場合:

英語得点 = TOEIC スコア/10 (80 点以上は80 点とする)

■ TOEIC-IP を利用した場合:

英語得点 = TOEIC-IP スコア/10 (80 点以上は 80 点とする)

※TOEIC-IP オンラインは利用できません。

■ IELTS(Academic Module) を利用した場合:

英語得点= IELTS オーバーオール・バンドスコア 6.0 以上は 100点, 5.5 は 82点, 5.0 は 68点

※ <u>ただし、換算された英語得点が 60 点未満の場合は不合格となる</u>。その場合でも検定料の返還は行わないので注意すること。

② 対象となるスコア

TOEFL iBT, TOEFL iBT Home Edition, TOEFL-ITP, TOEIC (Listening & Reading Test に限る) TOEIC-IP (Listening & Reading Test に限る) 及び IELTS (Academic Module) のいずれかの試験の成績を採用する。なお、留学生で TOEIC-PBT のスコアを有している者はあらかじめ教務学生係に相談すること。

③ スコアシートの提出

スコアシートは、出願期間内に提出してください。(<u>それ以降の提出は受け付けません。なお、</u> スコアシートの提出後の差し替えは一切認めません。)

■ TOEFL iBT, TOEFL iBT Home Editionのスコアシートを提出する場合以下の(1)と(2)の両方を提出してください。

- (1) 公式スコア「Institutional Score Report」または「Official Score Report」
- (2) 受験者に届く「Test Taker (Examinee) Score Report (コピー)」

なお、スコアシートを提出する際は、以下の点に留意すること。

1)「Institutional Score Report」または「Official Score Report」は、出願期間内にETS から名古屋大学に届くように所定の手続きをすること。(手続き時に名古屋大学の Institution Code 0312, Department Code を適切に指定すること。適切な Department Code がない場合は、99 と指定すること。)なお、TOEFL の受験後「Institutional Score Report」または「Official Score Report」が指定送付先に到着するまでに 6~8 週間程度かかると

されている。到着が遅れる場合もあるので、十分な時間的余裕を持って TOEFL を受験すること。

- Institutional Score Report」を提出する場合は、「Test Date Scores」のみを活用する。
 (My Best スコアは活用しない。)
- 3)「Test Taker (Examinee) Score Report」のコピーを出願時に提出すること。
- TOEFL-ITP のスコアシートを提出する場合 「受験者用控え (薄紫色のカード)」の原本を出願時に提出すること。
- TOEIC のスコアシートを提出する場合 「Official Score Certificate」(公式認定証)の原本を出願時に提出すること。 デジタル公式認定証を利用する場合は、PDF を印刷したものを提出すること。
- TOEIC-IP のスコアシートを提出する場合 「スコアレポート(個人成績表)」の原本を出願時に提出すること。 ※TOEIC-IP オンラインのスコアは利用できません。
- IELTS (Academic Module) のスコアシートを提出する場合「Test Report Form」の原本を出願時に提出すること。

④ スコアシートの有効期限

入学試験実施日から過去 2 年以内(2022 年 1 月 4 日以降)に実施され、出願時に提出可能なものを有効とする。

TOEIC「Official Score Certificate」(公式認定証) の返却は行わないので注意すること。

(2) 口述試験

日 時 2024年1月下旬 10時から17時までのうち1時間30分 詳しい日時と場所は受験票送付時に通知します。

口述試験の内容

志望する専攻の研究内容に関連した科目についての専門的学力、研究計画のほか、修士論文等、 および外国語(英語)能力について実施します。

2 国間での履修に問題が生じないかを両大学合同で評価し選考します。

(3) 試 験 場

名古屋大学大学院生命農学研究科(農学部) 市バス「名古屋大学」, 地下鉄「名古屋大学」駅下車, 又は地下鉄「東山公園」駅下車南へ500 m

9. 出願手続

(1) 専門分野の決定に当たっては、出願前に名古屋大学におけるその専門分野の教員の了承を必ず得てください。研究内容等を問合わせた結果、本学へ出願することとした場合は、以下の<送付先>に、「6. 出願書類」を定められた期限までに提出してください。

また、郵送する場合は、封筒の表に「大学院入学願書在中」と朱書し、書留郵便で以下の<送付先>に出願期間内に必着するよう送付してください。

(2) 出願手続後の書類の書き換え及び検定料の払い戻しはできません。

送付先 〒464-8601 名古屋市千種区不老町 名古屋大学農学部・生命農学研究科 教務学生係

10. 合格者発表 2024 年 2 月中旬(予定)

生命農学研究科ホームページに掲載するとともに、本人あて通知します。 https://www.agr.nagoya-u.ac.jp/jukensei/index.html

11. 入学手続

- (1) 入学手続については、2024年3月初旬までに本人あて通知します。
- (2) 入 学 料 282,000 円 (予定額)
- (3) 授業料 前期分 267,900円 (予定額) (年額 535,800円 (予定額))
 - (注) 在学中に授業料改定が行われた場合には、改定時から新授業料が適用されます。
- (4) 入学手続日は、2024年3月15日(金)の予定です。

12. 注意事項

- (1) 考査実施の詳細は、試験当日掲示します。受験者は試験開始20分前までに試験室に入室してください。
- (2) 入学試験結果の開示対象は、本入学試験に不合格となった者とします。試験後の2週間~2か月以内に請求してください。開示手続きの詳細は、名古屋大学農学部・生命農学研究科 教務学生係 (kyomu@agr.nagoya-u.ac.jp) にメールでお問い合わせください。
- (3) 障害等があって試験場での特別な配慮を必要とする者は、2023 年 11 月 10 日(金)までに、以下 3 点を 農学部教務学生係へ提出してください。
 - 1) 受験上の配慮申請書(障害の状況、受験上配慮を希望する事項とその理由等を記載したもの、 様式随意、A4サイズ)
 - 2) 障害等の状況が記載された医師の診断書、障害者手帳等(写しでも構いません)。
 - 3) 障害等の状況を知っている第3者の添え書(専門家や出身学校関係者などの所見や意見書)。
 - 4) 適宜それ以外の書類を添付しても構いません。

なお、入学後の修学に関して相談の希望がある場合は、出願期限までにお問い合わせください。

13. そ の 他

入学試験についての照会先

〒464-8601 名古屋市千種区不老町

名古屋大学農学部・生命農学研究科 教務学生係

E-mail: kyomu@agr.nagoya-u.ac.jp

名古屋大学大学院生命農学研究科

http://www.agr.nagoya-u.ac.jp

出願資格(7)による出願について

1. 出願資格

大学を卒業後,研究機関,教育機関,企業等において,本研究科入学時までにまでに2年以上研究に従事し, 学術論文,著書,研究発表,特許等により,修士学位論文と同等以上の価値があると認められる研究業績を有 する者

2. 個別審查

出願資格(7)により出願する者は、あらかじめ次の書類を 2023 年 10 月 30 日(月)〔必着〕までに、農学部・生命農学研究科教務学生係〔「13. その他」の「入学試験についての照会先」を参照〕へ提出または郵送(書留郵便で封筒の表に「出願資格審査願」と朱書)し、出願資格の有無についての個別審査を願い出てください。本研究科で個別審査を実施し、その結果は 2023 年 11 月 20 日(月)までに本人あて通知します。

- (1) 出願資格(7)による出願資格審査願 本研究科ホームページから所定の様式をダウンロードし、本人が記載してください。
- (2) 大学卒業証明書
- (3) 研究成果報告書

本研究科ホームページから所定の様式をダウンロードし、本人が 4,000 字程度で記載してください。 論文形式とします。

(4) 研究実績調書

本研究科ホームページから所定の様式をダウンロードし、本人が記載してください。

(5) 研究歴証明書

本研究科ホームページから所定の様式をダウンロードし、所属の長等が証明したもの

(6) 推薦書

本研究科ホームページから所定の様式をダウンロードし、所属の長等が証明したもの

- (7) 学術論文、著書、研究発表、特許等の写し
- (8) 履歴書(外国人用)

日本国籍を有しない者のみ提出してください。本研究科ホームページから所定の様式をダウンロード し、本人が記載してください。

(9) 返信用封筒 1通 出願資格審査結果通知用

長形3号封筒(12×23cm)に本人のあて名を記入し、374円切手を貼ったもの。 宛先が海外の場合は、返信に必要な郵便料金の国際返信切手券(IRC)を同封してください。

3. 出願期間

上記, 出願資格審査の結果, 出願資格「有」と判定された者は, 「6. 出願書類」を, 2023 年 11 月 27 日 (月)から 11 月 30(木)までに教務学生係へ提出してください。なお, 出願書類のうち, 出願資格審査で提出済みの書類は提出不要です。

郵送で出願する場合は、11月30日(木)午後4時までに到着するよう送付してください。

受付時間: 9 時から 11 時 30 分まで、午後 1 時 30 分から午後 4 時まで

出願資格(8)による出願について

1. 出願資格

本研究科において、修士の学位又は専門職学位を有する者と同等以上の学力があると認めた者で、本研究科 入学時までに 24 歳に達している者

2. 個別審査

出願資格(8)により出願する者は、あらかじめ次の書類を 2023 年 10 月 30 日(月)〔必着〕までに、農学部・生命農学研究科教務学生係〔「13. その他」の「入学試験についての照会先」を参照〕へ提出または郵送(書留郵便で封筒の表に「出願資格審査願」と朱書)し、出願資格の有無についての個別審査を願い出てください。本研究科で個別審査を実施し、その結果は 2023 年 11 月 20 日(月)までに本人あて通知します。

- (1) 出願資格(8)による出願資格個別審查願
 - 本研究科ホームページから所定の様式をダウンロードし、記載してください。
- ② 修士の学位又は専門職学位を有する者と同等以上の学力があることを示す資料
 - ※ 資料は下記の項目から該当するものを全て提出してください。 例:1) と 3
 - 1)履歴に短期大学,高等専門学校,専修学校,各種学校等の学歴を有する者 これらについての卒業又は修了証明書(卒業又は修了見込みの者については,その証明書),成績証明 書及びシラバス(授業要目)
 - 2) 履歴に技術的・専門的職業についての職歴を有する者 その期間及び職務内容を明記した在職証明書及び本人の作成した成果報告書(様式自由)
 - 3) 履歴に研究歴を有する者
 - 研究歴証明書(本研究科ホームページから所定の様式をダウンロードし, 所属の長等が証明したもの), 研究実績調書(本研究科ホームページから所定の様式をダウンロードし, 本人が記載)及び, 研究成果報告書(本研究科ホームページから所定の様式をダウンロードし, 本人が 4,000 字程度で作成, 論文形式とします)
 - 4) 業績として学術論文,著書,研究発表,特許,作品等を有する者 これらを示す資料
- ③ その他、審査の参考となる資料(自薦、他薦による推薦書など)
- ④ 履歴書(外国人用)

日本国籍を有しない者のみ提出してください。本研究科ホームページから所定の様式をダウンロードし、 本人が記載してください。

⑤ 返信用封筒 1通 出願資格審査結果通知用

長形3号封筒(12×23cm)に本人のあて名を記入し、374円切手を貼ったもの。 宛先が海外の場合は、返信に必要な郵便料金の国際返信切手券(IRC)を同封してください。

3. 出願期間

上記, 出願資格審査の結果, 出願資格「有」と判定された者は, 「6. 出願書類」を, 2023 年 11 月 27 日 (月)から 11 月 30(木)までに教務学生係へ提出してください。なお, 出願書類のうち, 出願資格審査で提出済みの書類は提出不要です。

郵送で出願する場合は、11月30日(木)午後4時までに到着するよう送付してください。

受付時間: 9 時から 11 時 30 分まで、午後 1 時 30 分から午後 4 時まで

専	研究室名	研 究 内 容		教	員	
攻			教 授	准教授	講師	助教
	1 土壌圏物質循環学	土壌圏を中心とした環境中における炭素、窒素、微量元素の循環、土壌有機物特に腐植物質の構造・機能・動態に関する研究。	渡邉 彰			
	2 植物土壌システム	植物、土壌、微生物の三者間の相互作用を解明することにより、森林生態系(とくに人工林)の持続性、健全性を検証する研究。		谷川東子		
	3 森林水文·砂防学	森林を主体とした地域や流域スケールでの水循環や土砂動態の解明とともに、地域社会とその災害の脆弱性の解明を行うことで、自然と社会の 多様なスケールでの持続的資源管理を可能とする研究とその社会実装。	五味 高志	田中 隆文		小谷 亜由美
1	4 森林生態学	森林生態学、森林遺伝学、森林生態生理学に関する広範な研究。特に、森林群集の構造、動態、機能および樹木個体群の遺伝的多様性、繁殖 生態、生態生理、物質生産に関する研究。	戸丸 信弘	中川 弥智子	小川 一治 (2024年3月退 職予定)	
森 林	5 森林保護学	森林や里山など緑域環境における生物群集の存在様式や生物間相互作用,生態系保全に関する研究。	梶村 恒		土岐和多瑠	
環 境	6 森林資源管理学	森林の先端的計測技術の開発、森林資源管理に関わる理論の構築、森林の将来計画立案とその評価手法の開発に関する研究。	山本 一清			
資源	7 森林社会共生学	森林保全と地域住民の生計向上をめざした森林管理政策、森林認証制度、参加型森林管理、コミュニティフォレストリーや、木材・木材製品をめぐる企業の原木調達戦略に関する研究。	原田 一宏	岩永 青史		
科 学	8 森林化学	木質系バイオマスの形成過程とその構造、および高度利用に関する有機化学的、生化学的、分析化学的な研究。	福島 和彦	青木 弾		
	9 循環資源利用学	樹木抽出成分の単離・構造決定、生合成、分布および利用に関する研究。		今井 貴規		
	10 木材物理学	樹木の成長過程と成長応力及び材質発現機構, 熱帯造林樹種の成長と木部成熟特性, 木質形成の分子生物学, 生物材料の水分・熱および力学 特性。	山本 浩之	吉田 正人		
	11 木材工学	木材·木質材料の構造利用における力学的耐久性, 木質構造の力学挙動解析, 森林資源の材質分布と需給計画, 木質による都市環境デザインなどに関する研究。	山﨑 真理子			安藤 幸世
	12 生物システム工学	生物資源を対象とした非破壊計測システムおよびデータサイエンスに関する研究。	土川 覚	稲垣 哲也		

専	研究室名	研究内容		教	員	
攻	明九王石	W 元 P3 任	教 授	准教授	講師	助 教
	13 植物生理形態学	植物細胞・組織の機能分化や環境ストレスに対する応答・耐性について,構造と機能の両面からの理解を図り,作物をはじめとする様々な有用植物の生理機能解明とその応用展開を行う。	谷口 光隆	三屋 史朗		大井 崇生
	14 植物遺伝育種学	栽培植物の系統分化, 形態形成, 発生および環境ストレス耐性に関する遺伝育種学的, 分子遺伝学的, 分子生物学的, および生理学的研究	中園 幹生	髙橋 宏和		縣 步美
	15 作物科学	作物生産の生理・生態学的解析、とくに環境応答・資源獲得に関する研究。	近藤 始彦	矢野 勝也	杉浦 大輔	
	16 園芸科学	果樹、野菜、花きなどの園芸作物の品質と生産性を向上するためのバイオテクノロジーおよび生理学・生化学・分子生物学的研究。特に、果実や 花の形質をに関わる、遺伝子組換えやゲノム編集などの分子育種、マルチオミクス、メタボローム解析とメタボリックエンジニアリング。		白武 勝裕		
	17 植物病理学	植物病原体の感染に対する植物の生体防御機構、植物病原体や有用微生物と植物の相互作用に関する生理学・生化学・分子生物学的研究。それらの成果を基盤とした生物防除法の開発に関する研究。		竹本 大吾 千葉 壮太郎		佐藤 育男
	18 植物免疫学	植物病原菌や害虫との相互作用で誘導される植物免疫の分子機構に関する研究。このメカニズムに基づく植物ワクチンの開発。		吉岡 博文		
2	19 耕地情報利用	作物の遺伝情報、形態、生理特性、生産物の収量や品質、土壌や気象等の生育条件等の様々な情報を収集し、それらの関係性を情報学的手法で解析することで有益な情報を抽出し、品種改良や栽培管理の改善を通じて作物生産を向上させるための研究	村瀬 潤	土井 一行		西内 俊策 沢田 こずえ***
· 植 物	20 食料経済学	食料・農業問題、地域資源管理、農業の多面的機能等に関する社会科学的および学際的研究。	徳田 博美	竹下 広宣		三浦 聡
生産	21 植物遺伝子機能	植物の遺伝子機能を明らかにする研究およびその利用に関する研究。	芦苅 基行	保浦 徳昇*		永井 啓祐
科学	22 発生学・システム植物学	高精細イメージングと多階層オミクスを駆使して花と根の発生をシステムとして理解する。フロリゲンの分子機能解明。植物成長と環境適応を支える根の組織構造の解明。	辻 寛之	山内 卓樹		
		環境・エネルギー・食の問題など、現代社会の課題解決を目指し、作物ゲノムビックデータを活用しつつ、基礎研究から社会実装を見据えた応用研究まで一気通貫型の先駆的育種学研究を展開する。	佐塚 隆志			岡田 聡史
	24 生物産業創出 ※募集無し	植物資源の価値化・保全へ向けた、接ぎ木、植物の全身性シグナル伝達メカニズムを中心とする基礎から応用までの研究。	野田口 理孝		黒谷 賢一** 笠原 竜四郎 **	
	25 熱帯生物資源	熱帯地域の持続的可能な農業開発を目指し、世界の食需要の多様化や気候変動に対応するための熱帯原産農林資源の探索や形質評価を行う。	江原 宏			仲田 麻奈
	26 生物遺伝情報	気候変動下での安定的な作物生産を目指し、生物資源の有用形質遺伝情報の抽出・利用に関する研究を行う。	犬飼 義明	_		
	27 実践アフリカ開発	アフリカの作物生産の向上と安定化に貢献するため、作物遺伝資源の環境応答や栽培技術開発に関する研究に取り組み、研究成果に基づく社会 実装の実現を目指す。		槇原 大悟		
	28 実践アジア開発	アジアの熱帯地域における持続的な適正農林業生産技術の開発、新資源・技術の馴化と普及を図り、研究成果に基づく社会実装を実現すること を目指す。		伊藤 香純		

^{*} 特任准教授 ** 特任講師 *** 特任助教

(2023年10月1日現在)

専	研究室名	研究内容			教 員	
攻	切九至石	에 지 방 삼	教 授	准教授	講師	助 教
	29 動物遺伝育種学	哺乳類および鳥類における様々な質的形質と量的形質の遺伝的基盤に関する研究、ゲノム編集等の発生工学を用いる動物の進化遺伝学研究、動物遺伝資源の評価と保全・利用に関する研究、ヒト疾患および生物機能研究用モデル実験動物の開発・育成に関する研究。	隅山 健太	石川 明		山縣 高宏
	30 ゲノム・ エピゲノムダイナミクス	脊椎動物や昆虫におけるトランスポゾンや遺伝子のエピジェネティック制御機構の研究。生殖細胞形成期のエピゲノム制御機構の研究。種間および種内でのエピゲノムやゲノムの比較解析を通した、ゲノムとエピゲノムの相互作用に関する研究。トランスポゾンの活性化によるがん細胞増殖抑制機構の研究。	一柳 健司			大谷 仁志
	31 動物形態学	脊椎動物における形成と変形に関わる研究。脊椎動物におけるウイルスの内在化および内在化ウイルスの役割。Transgenerational epigenetic inheritance (TEI)。	本道 栄一			飯田 敦夫
3	32 動物統合生理学	脊椎動物(哺乳類、鳥類、魚類)の季節適応機構と概日時計機構の解明。季節繁殖や概日時計の制御を通じた動物生産性の向上とヒトの健康の増進に関する研究。ニワトリにおける成長制御と成長因子発現調節に関わる研究。	吉村 崇	大川 妙子	金 尚宏**	塚田 光 中山 友哉*** CHEN Junfeng***
動物	33 動物生殖科学	哺乳類の生殖機能制御を担う神経内分泌学的な基礎研究と、そのメカニズムを利用した畜産や創薬への応用研究。	東村 博子	上野山 賀久 井上 直子		
科学	34 動物栄養科学	鳥類と哺乳類における栄養素(アミノ酸やビタミンCなど)の代謝機構と、それらの代謝産物が持つ生理機能の探索。鳥類の卵に含まれる生体分子の取り込み機構の解明とその仕組みを利用した有用タンパク質生産への応用。	村井 篤嗣			古川恭平
	35 動物生産科学	反芻家畜の生理機能の調節機序に関する基礎研究とその機能を利用した動物生産にかかわる応用研究。	大蔵 聡	松山 秀一 中村 翔*		
	36 鳥類バイオサイエンス	鳥類有用遺伝形質を利用した遺伝学・分子細胞生物学。鳥類遺伝子改変技術の作出と医薬品生産を目指した利用。	西島 謙一			奥嵜 雄也
	37 水圏動物学	水産動物の神経系、感覚器、運動器に関する形態学的、生理・生態学的、進化行動学的研究、ならびにペプチドニューロンによる感覚・神経系 ~行動の持続的制御に関する神経生理学的研究。	山本 直之	阿部 秀樹		後藤 麻木 萩尾 華子***
	38 資源昆虫学	昆虫ウイルスの増殖機構とウイルスと宿主昆虫との相互作用、昆虫の抗ウイルス応答機構についての研究。	池田 素子			浜島りな
	39 害虫制御学	生理生化学・分子生物学的アプローチを通じた農業害虫の制御法開発に関する研究。		水口 智江可		

^{*} 特任准教授

(2023年10月1日現在)

^{**} 特任講師

研究室名	研 究 内 容	#L 1=1	W 10 100	教員	nı 20
例えまっ		教 授	准教授	講師	助教
40 生物有機化学	特異な化学構造と生物活性を示す天然有機化合物の生物有機化学的研究:新しい有機合成反応・合成方法論の開発,天然有機化合物の全合成研究と生物機能の解析・制御に関する研究。	西川 俊夫			宮坂 忠親
41 生物活性分子	植物や微生物などが生産する生物活性分子の同定、作用機構、応用に関する研究。糖鎖に結合する低分子化合物の分子認識メカニズムの解析と応用研究。		中川 優	近藤 竜彦	
42 天然物ケミカルバイオロジー	1生物現象を司る天然物の単離、構造決定、合成、生合成、および作用機序に関する研究。哺乳動物由来の麻痺性神経毒や、海洋生物の共生現象鍵物質に関する研究。蛍光ブローブを用いた新たな標的分子の解析法の開発。	北 将樹	恒松 雄太		
43 高分子生物材料化学	糖鎖高分子,生物機能高分子,生分解性高分子,植物由来高分子およびこれらを活用した医用高分子の設計,精密合成,機能発現に関する研究。生物的機能を有するバイオマテリアルの創出。	青井 啓悟	野村 信嘉		
44 応用酵素学	フラビン酵素やビリドキサル酵素の構造機能相関。イソプレノイドやアミノ酸、ビタミンの生理作用と代謝関連酵素に関する研究。微生物や酵素を 用いた有用物質生産に関する研究。 古細菌の脂質合成に関する研究。	邊見 久	伊藤 智和		
45 分子生物工学	新規な生物機能分子、生物反応プロセス、解析システムを創成することを目的とした生物工学的研究を行っています。現在、新規モノクローナル 抗体スクリーニング、一分子スクリーニング技術を用いたタンパク質工学、翻訳促進配列のメカニズム解明などが主要な研究テーマとなっていま す。	中野 秀雄		DAMNJANOVIC, Jasmina	加藤 晃代
46 土壌生物化学	水田生態系各部位に生息する生物群集の構造・特性と機能および生物間の相互作用に関する研究。	浅川 晋	渡邉 健史		
47 応用微生物学	食品の製造や植物の病気に関わる力ビを題材として、分子・化学遺伝学的なアプローチから物質生産とその制御機構に関する基盤研究を進めている。また、微生物の機能を活かし、食資源活用や健康増進への貢献を目指した応用研究も行なっている。	木村 眞			前田 一行
48 食品機能化学	食と健康をキーワードとした基礎研究、特に生活習慣病に関連した内因性因子としての酸化ストレス、及び外因性環境因子としての機能性食品に関する研究。	柴田 貴広			中島 史恵
49 分子細胞制御学	健康寿命の延伸に資する、ヒトを含む動物細胞の成長・分化・細胞死における情報伝達や細胞内輸送、細胞外分泌、遺伝子発現制御に関する 生化学的および分子細胞生物学的研究。		柴田 秀樹	高原 照直	
50 分子生体制御学	哺乳類におけるタンパク質、核酸とこれら複合体の生合成および生体内での動態、ならびに上記分子の細胞増殖・組織分化を含む生体における作用および制御機構を生化学・分子細胞生物学的に研究しています。乳腺発達と乳汁産生、リボソームを含む翻訳制御機構、および生理活性成分への上皮応答が主な研究対象です。		灘野 大太		大島 健司
51 糖鎖生命科学	真核生物における糖鎖の役割の理解と制御を通じて、よりよい健康、環境、食を目指した農医薬融合研究を行っています。現在は主に精神疾患 や癌をターゲットとしています。	佐藤 ちひろ			羽根 正弥
52 動物細胞機能	糖タンパク質や糖脂質の糖鎖代謝変化が個体レベルに及ぼすインパクトをメダカを用いたグライコミクスを含む統合オミックス解析によって解 明。	北島 健			呉 迪
53 動物細胞生理学	真核生物における膜輸送体タンパク質、細胞外マトリックスタンパク質の生理機能と情報伝達に関する研究。		MATURANA Andrés Daniel	新美 友章	
54 栄養生化学	栄養素(主にタンパク質・アミノ酸)による酵素および遺伝子発現の制御機構。3次元培養による肝臓特異的遺伝子発現の制御機構に関する研究。肝臓の概日リズムのメカニズムと時間栄養学。分岐鎖アミノ酸の代謝と生理機能。		小田 裕昭	北浦 靖之	
55 食理神経科学	ヒトを含む雑食性の動物は様々な食物を味覚や嗅覚などを用いて評価・選択した後に摂取します。本研究室の研究テーマはその基準の基盤となる神経メカニズムの解明です。	中島 健一朗			RATTANAJEARAK L, Nawarat***
56 植物情報分子	栄養環境の変化に応答した植物の成長制御について、それに関わる情報分子の同定や生合成、輸送のしくみを分子レベルで解明することを目指した研究を行なっている。	榊原 均	木羽 隆敏	田畑 亮** 橋本(杉本) 美海	BELLEGARDE, Fanny***
57 生物化学	花・花粉・根など植物の各器官の分化を引き起こす遺伝子の働きについて、生化学的・分子生物学的・分子遺伝学的・形態学的な手法を用いて 研究している。また、高等植物とシアノバクテリアの光合成や無機栄養素同化を支える膜タンパク質の機能とその制御機構を研究している。		石黒 澄衞		前尾 健一郎 前田 真一 中西 洋一
58 ゲノム情報機能学	クロロフィル生合成・窒素固定・概日リズム・ホルモン情報伝達の調節機構に関する研究を、主としてシアノバクテリア・植物を材料として、生化学的、細胞分子生物学的、分子遺伝学的観点から行っている。	藤田 祐一	山篠 貴史		山本 治樹
59 植物細胞機能	高等植物の成長・分化制御とその環境情報応答に関する研究。植物細胞における人工的な非膜系オルガネラの構築に関する研究。		上口 智治 武田 真		
60 植物統合生理学	内的・外的環境の周期的な変化を感知し、植物が自らの生理現象を秩序立てる仕組みを、主に分子遺伝学・生化学・マルチオミクス研究によって、分子から個体レベルでの秩序の形成や維持の仕組みの解明を目指す。またこの知見を基盤とした植物の生産性の向上に資する技術開発にも取り組む。	中道 範人			村中 智明
	植物の代謝制御機構の解明と有用物質生産への応用を目指したオミクス研究。	平井 優美			
61 植物代謝システム	E DO TOM OF MENTING THE CONTROL OF T				

The following provides information to applicants on admissions to the International Collaborative Program in Agricultural Sciences between Nagoya University and Kasetsart University beginning in April 2024.

1. Requirements for applicants:

Applicants must meet one of the following conditions and satisfy English proficiency requirements by the day prior to the day of enrollment:

- (1) Applicants who have a master's degree or professional degree.
- (2) Applicants who have obtained in a foreign country a professional degree equivalent to the master's degree of Nagoya University.
- (3) Applicants who have obtained a degree equivalent to a master's degree or a professional degree by taking correspondence courses offered in Japan by a foreign school.
- (4) Applicants who have obtained a degree equivalent to a master's degree or a professional degree in Japan by completing one of the relevant courses at an educational institution that is recognized by the authorities of a foreign country as an institution offering graduate courses and is approved by the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT).
- (5) Applicants who have completed a course of study at the United Nations University and have received a degree equivalent to a Master's degree at the United Nations University. The United Nations University refers to the university established by the United Nations General Assembly's resolution of December 11, 1972. The university is provided for under Paragraph 2, Article 1 of the Act on Special Measures (Law No. 72, 1976) concerning the Implementation of the Agreement between the United Nations and Japan relating to the Headquarters of the United Nations University.
- (6) Persons who have completed the curriculum of a foreign school, educational institution designated under criterion (4), or the United Nations University; have passed the equivalent of a basic skills review for doctoral thesis research; and have been recognized as having scholastic ability equivalent to or higher than that of persons who have a master's degree.
- (7) Applicants approved by the Minister of Education, Culture, Sports, Science and Technology (1994 Ministry Bulletin, Vol. 123).
 - Applicants must have either graduated from a university or completed a course of 16 years of formal education, followed by research for at least two years at a university or research institute. The results of this research must be recognized by the Graduate School of Bioagricultural Sciences, Nagoya University as the equivalent of a master's degree.

NOTE: See "Candidates applying under requirement (7)" on page 16.

(8) Applicants who are recognized by this Graduate School to be equivalent in academic level to a graduate student with a master's degree or a professional degree.

NOTE: See "Candidates applying under requirement (8)" on page 18.

2. Maximum number of enrollment : A several

3. Application Periods

Application Periods: November 27 to November 30, 2023

Open from 9:00 a.m. till 11:30 a.m. and from 1:30 to 4:00 p.m. (JST)

Applicants must ask the Laboratory in which he/she wishes to study for study topics before application. NOTE: See the attached "Laboratories, Areas of Research, and Staff."

4. Required documents for application

(1)	Application form/Photograph card/Examination Registration Card	Download and fill out the prescribed form from the Graduate School website.
(2)	A photo	A photograph taken within the last three months, affixed to Photograph card.
(3)	Academic Transcripts	Original copies of official transcript from the undergraduate school (including liberal arts) and the graduate school the applicant has attended. If they are not written in Japanese or English, please attach a translated English version.
(4)	Certificate of master's degree or of being awarded a master's degree*	* Applicants who have graduated from a university in China, should print the certificate issued by the Center for Student Services and Development (CSSD) and submit it along with other application documents. The details of this process can be checked on the CSSD website (https://www.chsi.com.cn/en/). The issuance of certificates may take time, so applicants should start the process early.
(5)	TOEFL or TOEIC or IELTS score sheet	See "7. Examinations", Item 1 "Submission of score sheets for foreign language (English) examination" for details. Applicants exempted from the written examination through application qualifications do not need to submit these.
(6)	A photocopy of Master's Thesis (or its equivalent) and three copies of its summary (Japanese or English)	If the Master's Thesis (or its equivalent) has not been completed, three copies of its summary in around 1,500 words English must be submitted at the time of application.
(7)	Return envelope (For the receipt of the Examination Form)	Submit self-addressed envelope with the Applicant's address, postal code, and name clearly indicated. Affix a 374 JPY stamp to the envelope.
(8)	Letter of approval for taking examination if applicants have a job, using the prescribed form.	Needed only for applicants working at a government/public office or a company. Download and fill out the prescribed form from the Graduate School website,
(9)	Personal History (Foreign Applicants)	Download and fill out the prescribed form from the Graduate School website (only required for those who do not possess Japanese citizenship).
(10)	A photocopy of Residence Card (both sides).	Needed only for applicants without Japanese nationality, excluding those with official approval of permanent residency in Japan.
(11)	Declaration of applicable specific categories*	Download and fill out the prescribed form from the Graduate School website. If you fall into one of the following categories, please submit the relevant evidence. For details, please refer to *Regarding submission of "(11) Declaration of applicable specific categories".

*Regarding submission of "(11) Declaration of applicable specific categories".

In November 2021, in accordance with the clarification of the scope of control for "Deemed Exports" under the Foreign Exchange and Foreign Trade Act ("FEFTA"), some provision of sensitive technology to students by universities has become subject to control under the FEFTA.

- 1) Please submit a "Declaration of applicable specific categories" when applying to our graduate program. Please also submit the relevant evidence if you fall into one of the Categories 1 to 3.
 - employed by a foreign government/corporation: proof of employment
 - receiving scholarship from a foreign government/corporation: notice of scholarship award or application form
- 2) Students will also be required to submit a "Letter of confirmation" at the time of their admission.
 - * If there are other required documents than the above, we will contact you separately.

5. How to Pay Entrance Examination Fee

(1) Entrance Examination Fee: 30,000 JPY

*In addition to the application fee, a service charge (about 500 JPY) will be required.

(2) Payment Period (Japan Standard Time)

November 1, 2023 - November 30, 2023

The entrance examination fee can be paid outside of the application period.

Please double check the application period before completing the payment.

(3) Payment Method

Please contact the Student Affairs Section of the Graduate School of Bioagricultural Sciences (refer to 11.) before application.

(4) Refunding of Entrance Examination Fee

We will not refund the paid entrance examination fee once the application documents have been received. However, we will refund the paid entrance examination fee if any of the following circumstances apply. Please note that any transfer fees required for the refund process will be deducted from the refunded amount.

- a) The entrance examination fee has been paid, but no application was made or the application was not accepted.
- b) The entrance examination fee has been paid twice.
- *Entrance examination fee refunds will be done through bank transfer. If the refund is sent to an overseas bank account, the refunded amount will be greatly reduced, and it will take many days to complete the refund process, so please be careful when paying the entrance examination fee.

For information on how to request a refund, please check the Nagoya University website (http://www.nagoya-u.ac.jp/) - Admissions - Graduate School Entrance Examination/Undergraduate Transfer Examination etc. - Regarding Entrance Examination Fees (in Japanese).

6. Examinations

(1) Submission of score sheets for foreign language (English) examination

(Applicants under requirement (7) or (8) must submit it.)

TOEFL or TOEIC or IELTS scores will be used as the means of assessment for the foreign language (English) examination.

Note: Applicants fulfilling requirements (1),(2),(3),(4),(5) or (6), are exempted.

1. Examination Method

Submit one TOEFL or TOEIC or IELTS score sheet. There will be no written examination. The score from either TOEFL or TOEIC or IELTS will be calculated using the following method, and will be adopted as your foreign language (English) score.

■For TOEFL iBT

English score = $50 + (TOEFL iBT score - 50) \times 5/3$ (converted scores of 100 points or higher will all be treated as 100 points)

■For TOEFL iBT Home Edition

English score = $50 + (TOEFL iBT Home Edition score - 50) \times 5/3$ (converted scores of 100 points or higher will all be treated as 100 points)

■For TOEFL ITP

English score = TOEFL ITP score \times 0.34-108 (converted scores of 100 points or higher will all be treated as 100 points)

■For TOEIC

English score = TOEIC score/ 10 (converted scores of 80 points or higher will all be treated as 80 points)

■For TOEIC-IP

*TOEIC-IP Online is not available.

English score = TOEIC-IP score/ 10 (converted scores of 80 points or higher will all be treated as 80 points)

■For IELTS(Academic Module)

English Score = 100 for IELTS Overall Band Score of 6.0 or higher, 82 for 5.5, 68 for 5.0

2. Eligible scores

Scores from the following can be submitted: TOEFL-iBT, TOEFL iBT Home Edition, TOEFL-ITP, TOEIC (limited to Listening & Reading Test), TOEIC-IP (limited to Listening & Reading test) or IELTS(Academic Module). International applicants who have TOEFL-PBT scores should consult the Student Affairs Section before submitting documents.

3. Submission of score sheet

Score sheets must be submitted during the application period. (Submissions after the application period will not be accepted. Note that score sheets may not be changed after submission, without exception.)

■ If you submit a score sheet from TOEFL iBT or TOEFL iBT Home Edition.

Please submit both (1) and (2) below.

- (1) Official Score: "Institutional Score Report" or "Official Score Report"
- (2) A copy of the "Test Taker (Examinee) Score Report" that is sent to the examinee.

Please note the following points when submitting the score sheets.

1) For the "Institutional Score Report" or the "Official Score Report", please be sure to complete the designated procedures so that the reports can be sent from the ETS to Nagoya University within the application period (When making the procedures, please designate the appropriate Nagoya University's Institution Code "0312" and the Department Code. If there is no appropriate Department Code, designate "99".) Note that after the TOEFL examination, it takes about 6 to 8 weeks for the "Institutional Score Report" or "Official Score Report" to reach the designated recipient. There may

^{*} Any converted score of less than 60 points will count as a failing score. In this case, please be aware that the application fee is still non-refundable.

be delays in arrival, so please take the TOEFL examination well ahead of time.

- 2) If you submit the "Institutional Score Report", use only the "Test Date Scores". (You may not use My Best Score.)
- 3) Please submit a copy of the "Test Taker (Examinee) Score Report" with the application documents.
- If you submit a score sheet from TOEFL ITP

Please submit an original of the "Test Taker's Copy of Score Report (light purple card)" with the application documents.

■ If you submit a score sheet from TOEIC

Please submit an original of the "Official Score Certificate" with the application documents.

If using a digital official certificate, submit a printout of the PDF.

■ If you submit a score sheet from TOEIC-IP

Please submit an original of the "Score Report" with the application documents.

*TOEIC-IP Online scores are not available.

■ If you submit a score sheet from IELTS (Academic Module)

Please submit an original of the "Test Report Form" with the application documents.

4. Period of validity of score sheets

Tests from 2 years before the entrance examination (i.e. January 4, 2022, or later) to those for which results can be submitted by the application deadline are valid.

Please note that TOEIC "Official Score Certificate" will not be returned.

(2) Oral examination

Date: Late January, 2024

(Details regarding the time and location will be announced when mailing the Examination Registration Card.)

Matter of Oral Examination

Fundamental knowledge in the target academic area in which the applicant wishes to study, research plan, master's thesis, etc., and proficiency of foreign language (English)

(3) Place of Examination

Graduate School of Bioagricultural Sciences, Nagoya University (School of Agricultural Sciences) 500m eastward from the city bus stop "Nagoyadaigaku" or the subway station "Nagoyadaigaku", or 500m southward from the subway station "Higashiyama-koen"

7. Application Procedures

The completed application form and required items listed "4. Required documents for application" must be submitted to the Student Affairs Section, Graduate School of Bioagricultural Sciences, Nagoya University. Applications can also be sent by mail to our Section. (Address: Furo-cho, Chikusa-ku, Nagoya 464-8601) When sending by mail, indicate on the envelope "Application for Graduate School" in red ink. It must reach us by 16:00 on November 30, 2023 via registered mail.

Notice: Application documents cannot be altered or returned after submission for any reason. The application fee will not be returned or refunded.

8. Announcement of examination results

Date: Mid-February, 2024(expected)

Place: Noticed board at Graduate School of Bioagricultural Sciences (It will be posted on Graduate School

of Bioagricultural Sciences website: http://www.agr.nagoya-u.ac.jp)

NOTE: Applicants will also be notified by mail.

9. Enrollment Procedures

- (1) Detailed enrollment procedures will be notified by mail beginning in March 2024.
- (2) Registration fee: 282,000 JPY (expected)

Nagoya University by October 27, 2023.

(3) Tuition: 267,900 JPY per semester (535,800 JPY per year) (expected)

NOTE: In case of any revision in tuition, the new rate will be made effective on and after the date of revision.

(4) Registration date: The matriculation date is scheduled to be on March 15, 2024.

10. Notes

- (1) Applicants cannot make any changes or ask for a refund after submitting the application form.
- (2) Further notifications for the examination will be given on the notice board on the date of examination. Examinees must be seated in the examination room 20 minutes before the examination starts.
- (3) The results of the entrance examination are to be disclosed to those who have failed this entrance examination. Requests should be made within 2 weeks to 2 months after the examination. For more information, please send an e-mail to (kyomu@agr.nagoya-u.ac.jp).
- (4) For applicants with disabilities or other special needs Applicants with disabilities or other special needs that require reasonable accommodations and adjustments for taking the entrance examinations due to their disabilities or other special needs should submit the following documents to the Student Affairs Section, Graduate School of Bioagricultural Sciences,
 - Application form for reasonable accommodations or adjustments: On A4 size paper in the format of your choice, please provide information regarding the condition of your disabilities or other special needs, which specific accommodations and adjustments are required for you to take the entrance exam and why they are necessary.
 - 2) Medical certificate, any certificates of your disability (e.g., "Shogaisya-techo" in Japan), etc.: Applicants must submit Medical Certificates or other alternative documentation that provides detailed information regarding the limitation on a major life activities caused by the disabilities or other special needs, and provides sufficient justification for the requested accommodations or adjustments. (Copies acceptable)
 - 3) Third Party Statements: Applicants must obtain and submit statements from third parties that are familiar with the applicant's disabilities or special needs and can attest to the resulting limitation on a major life activities and required accommodations. (Observations and opinions from medical professionals, relevant faculty from the applicant's school, and other specialists)
 - 4) Other Documents: Applicants may, if desired, submit additional documentation providing additional information regarding their disabilities or other special needs and the recommended accommodations or adjustments.

For inquiries regarding reasonable accommodations or adjustments for taking the entrance examination or while attending Nagoya University, please feel free to contact the Student Affairs Section, Graduate School of Bioagricultural Sciences, Nagoya University by the application deadline.

11. Others

For more information on the examinations, ask:*Please be sure to email us.

Student Affairs Section, Graduate School of Bioagricultural Sciences, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8601

E-mail: kyomu@agr.nagoya-u.ac.jp https://www.agr.nagoya-u.ac.jp

Candidates Applying under Requirement (7)

1. Candidates applying under Requirement (7) must meet the following conditions:

By the day prior to the day of enrollment, applicants must have graduated from a university, followed by research for at least 2 years at a research institute. Applicants must also have published research papers, books, made research presentations, or hold patents recognized as the equivalent of a master's thesis or above.

2. Application for Certificate of Approval as Eligible Applicant.

Applicants under Requirement (7) must either submit or mail the following documents $\bigcirc \sim \bigcirc$ by or on October 30 2023 to the Student Affairs Section, Graduate School of Bioagricultural Sciences, Nagoya University. The set of documents, if mailed, should have "Application for Certificate of Approval as Eligible Applicant." written in red ink on the envelope, and be sent by registered mail. Applicants will be notified of the results by November 20, 2023.

Documents required:

- Application Form for the application under Requirement (7)
 Download and fill out the prescribed form from the Graduate School website.
- ② Certificate of graduation from a university
- ③ Summary of research results.

Download and fill out the prescribed form from the Graduate School website. It should be written in the format of a research paper and be approx. 4,000 Japanese characters in length (1,500 words in English).

- 4 Bibliography
 - Download and fill out the prescribed form from the Graduate School website.
- (5) Certificate of academic background
 - Download and fill out the prescribed form from the Graduate School website. The form should be signed by the head or other proper authority at the applicant's affiliated institution.
- ⑥ Letter of recommendation
 - To be written by the head or other proper authority at the applicant's affiliated institution. Download and fill out the prescribed form from the Graduate School website.
- 7 A copy of research papers, books, research presentations, or patents, etc.
- Personal History for Foreign Applicants
 - Download and fill out the prescribed form from the Graduate School website (only required for those who do not possess Japanese citizenship).
- A return envelope to receive results of the application. Enclose a self-addressed envelope (12× 23 cm) with a 374 JPY stamp affixed.
 - (If the applicant resides overseas, please enclose a sufficient International Reply Coupon (IRC) to cover the required return postage.)

3. Application Procedures

The candidates approved as Eligible Applicants can apply for admission to the Doctoral Program by submitting the set of documents. (See "4. Required documents for application".)

The set of documents for application must be submitted to the Student Affairs Section, Graduate School of Bioagricultural Sciences, Nagoya University, from 9:00 to 11:30 a.m. and from 1:30 to 4:00

p.m. from November 27 to November 30, 2023. Applications can also be sent by mail to our office. (Address: Furo-cho, Chikusa-ku, Nagoya 464-8601)

When sending by mail, indicate on the envelope "Application for Graduate School" in red ink. It must reach us by November 30, 2023 by registered mail.

4. Notice

Application documents cannot be altered or returned after submission for any reason. The application fee will not be returned or refunded.

Candidates Applying under Requirement (8)

1. Candidates applying under Requirement (8) must meet the following conditions:

Applicants under Requirements (8) must be recognized by the Graduate School of Bioagricultural Sciences, Nagoya University to be equivalent in academic level to a graduate student with a master's degree or a professional degree, and must reach 24 years old by the day prior to the day of enrollment.

* Applicants who have graduated from any school in China must ask the Student Affairs Section, Graduate School of Bioagricultural Sciences for details.

2. Application for Certificate of Approval as Eligible Applicant.

Applicants under Requirement (8) must either submit or mail the following documents by or on October 30, 2023 to the Student Affairs Section, Graduate School of Bioagricultural Sciences, Nagoya University. The set of documents, if mailed, should have "Application for Certificate of Approval as Eligible Applicant." written in red ink on the envelope, and be sent by registered mail.

Applicants will be notified of the results by November 20, 2023.

Documents required:

- Application Form for the application under Requirement (8)
 Download and fill out the prescribed form from the Graduate School website.
- ② Reference material showing that the applicant is equivalent in academic level to a graduate student with a master's degree or a professional degree;
 - *Submit one or more relevant materials listed below. For example: 1) or3)
 - 1) Applicants who have graduated or will be graduating from a junior college, technical college, special school or other school:
 - Diploma or certificate of graduation/ expected graduation
 - Official transcript (academic record)
 - Syllabus
 - 2) Applicants who have technical/ professional career:
 - Certificate of employment, specifying its period and matter of tasks, and report of his/her career achievements prepared by the applicant (form not specified).
 - 3) Applicants with academic work:
 - Certificate of academic background
 - Download and fill out the prescribed form from the Graduate School website. The form should be signed by the head or other proper authority at the applicant's affiliated institution.
 - Bibliography
 - Download and fill out the prescribed form from the Graduate School website.
 - -Summary of research results
 - Download and fill out the prescribed form from the Graduated School website. It should be written in the format of a research paper and be approx. 4000 Japanese characters in length (1,500 words in English).
 - 4) Applicants with published research papers or books, research presentations, patents, etc.:
 - Any reference material showing each
- ③ Others
 - Any material for examination purposes (e.g.: Letter of recommendation)
- 4 Personal History for Foreign Applicants

Download and fill out the prescribed form from the Graduate School website (only required for those who do not possess Japanese citizenship).

⑤ A return envelope to receive results of the application. Enclose a self-addressed envelope (12×23 cm) with a 374 JPY stamp affixed.
(If the applicant resides overseas, please enclose a sufficient International Reply Coupon (IRC) to cover the required return postage.)

3. Application Procedures

The candidates approved as Eligible Applicants can apply for admission to the Doctoral Program by submitting the set of documents. (See "4. Required documents for application".)

The set of documents for application must be submitted to the Student Affairs Section, Graduate School of Bioagricultural Sciences, Nagoya University, from 9:00 to 11:30 a.m. and from 1:30 to 4:00 p.m. from November 27 to November 30, 2023, . Applications can also be sent by mail to our office. (Address: Furo-cho, Chikusa-ku, Nagoya 464-8601)

When sending by mail, indicate on the envelope "Application for Graduate School" in red ink. It must reach us by November 30, 2023 by registered mail.

4. Notice

Application documents cannot be altered or returned after submission for any reason. The application fee will not be returned or refunded.

					St	aff	
Department	Laboratory	Area of Research	Research Key Words	Professor	Associate Professor	Lecturer	Assistant Professor
	Resources Cycling in Pedosphere	Cycles of carbon, nitrogen, and trace elements in pedosphere and related environments. Chemical structure, function, and dynamics of soil organic matter, in particular humic substances.	Soil organic matter, humic substances, black carbon, greenhouse gas, dissolved organic matter	WATANABE, Akira			
	2. Plant-Soil Systems	Studies on nutrient dynamics in forest ecosystems. Our specific focus is to evaluate forest health by disentangling tripartite interactions among plant, soil, and microbes.	biogeochemistry, coastal forests, forest soil science, Ground penetrating radar, plantation forests		TANIKAWA, Toko		
	Forest Hydrology 3. and Disaster Mitigation Science	Research for elucidating hudrological cycle, sediment dynamics, and disaster volnearbility of local comunity in regional and watershed scales. Research and its social implementation for sustainable resources management is included.	hydrological processes in watersheds, biosphere-atmosphere interaction, human-nature interaction, disaster resilience and sediment dynamics	GOMI, Takashi	TANAKA, Takafumi		KOTANI, Ayumi
	4. Forest Ecology	Our laboratory covers a wide range of studies related to forest ecology, forest genetics, and forest ecophysiology. Especially structure, dynamics, and functions in forest communities. Also genetic diversity, reproductive ecology, ecophysiology, and dry matter production in tree populations.	Forest tree, Reproductive ecology, Population genomics, Molecular ecology, Conservation, Tropocial forest	TOMARU, Nobuhiro	NAKAGAWA, Michiko	OGAWA, Kazuharu (Scheduled to retire in March 2024)	
1. Forest and	5. Forest Protection	Forest entomology focusing on insect-fungus and insect-plant interactions. Forest ecosystem conservation based on the management of biological communities.		KAJIMURA, Hisashi		TOKI, Wataru	
Envioronmental Resources Sciences	6. Forest Resource Management	Research on development of cutting edge measurement technology of forest, construction of theory concerning forest resource management, development of future planning and evaluation method of forest management.	Remote Sensing, GIS, Forest planning, Forest measurement, LiDAR	YAMAMOTO, Kazukiyo			
	7. Forest Resources and Society	Studies on forest management policy for realizing both forest conservation and improvement of local livelihoods, forest certification, participatory forest management, community forestry and timber procurement strategies of enterprise	Forest policy, National park, Community forestry, Ecotourism, Forest resource use	HARADA, Kazuhiro	IWANAGA, Seiji		
	8. Forest Chemistry	Organic chemical, biochemical, and analytical chemical studies on the formation process, structure, and advanced utilization of woody biomass.	woody biomass, plant cell wall, lignin, chemistry	FUKUSHIMA, Kazuhiko	AOKI, Dan		
	9. Biomass Resource Utilization	Isolation and structural elucidation, biosynthesis, distribution and utilization of wood extractives.	Wood extractives, Isolation and structural elucidation, Biosynthesis, Visualization, Chemicalanalysis		IMAI, Takanori		
	10. Wood Physics	Generation processes of growth stress and wood properities during tree growth, Growth and maturation of tropical plantation species, Analysis of reaction wood formation by molecular approach, Physical and mechanical properties of wood materials.	Cell wall, cellulose, secondary growth, growth stress, plantation resources	YAMAMOTO, Hiroyuki	YOSHIDA, Masato		
	11. Timber Engineering	Mechanical durability in structural use of wood and wood-based materials, Analysis of mechanical behavior in timber structure, Quality-of-material distribution and the plan for demand and supply of forest resources, Wood utilization in urban design.	Timber engineering, Strength, Failure and fatigue, Woodutilization, Woodurbanism	YAMASAKI, Mariko			ANDO, Kosei
	12. System Engineering for Biology	Studies on nondestructive measurement system and data science for biological resources.	Nondestructive measurement, Spectroscopy, Imaging analysis, Data science, Machine learning, Mechanical engineering	TSUCHIKAWA, Satoru	INAGAKI, Tetsuya		
		*** Designated Assistant Professor				100	of October 1, 2023)

*** Designated Assistant Professor (as of October 1, 2023)

						Staff	
Department	Laboratory	Area of Research	Research Key Words	Professor	Associate Professor	Lecturer	Assistant Professor
	13. Plant Physiology and Morphology	Studies from both aspects of structure and function on functional differentiation of plant cells and tissues, and response and tolerance to environmental stresses.	Rice, C4 plants, Photosynthesis, Salinity, Environmental stresses, Stress tolerance, Ultrastructure, Electron microscope	TANIGUCHI, Mitsutaka	MITSUYA, Shiro		OI, Takao
	14. Plant Genetics and Breeding	Breeding, molecular genetical, molecular biological, and physiological researches related to the evolution, morphogenesis, development, and environmental stress tolerance of cultivated plant species.	Crop plants (rice, maize, wheat and soybean), Abiotic stress tolerance, Flooding, Root, Panicle, Molecular genetics, Molecular bleeding,	NAKAZONO, Mikio	TAKAHASHI, Hirokazu		AGATA, Ayumi
	15. Crop Science	Physiological and ecological studies on crop production: nutrient acquisition and growth response to environment.	Crop productivity, Environmental stress, Nutrient acquisition, Sink-source relationship, Symbiosis	KONDO, Motohiko	YANO, Katsuya	SUGIURA, Daisuke	
	16. Horticultural Science	Physiological, biochemical, and molecular biological approaches to clarify the characteristics and growth of horticultural crops, i.e. flowers, vegetables, and fruit trees, to improve their quality and productivity.	Horticultural crops, Molecular breeding, Genome editing, Multi-omics, Metabolomics and metabolic engineering		SHIRATAKE, Katsuhiro		
	17. Plant Pathology	Physiological, biochemical and molecular-biological researches on defense mechanisms of plants against plant pathogens, and interactions of plant pathogens and beneficial environmental microorganisms with host plants. Development of biocontrol measures and understanding of its mechanisms.	Plant disease resistance, Elicitor, Plant- associated microbes, Plant and Fungal viruses, Biological control		TAKEMOTO, Daigo CHIBA, Sotaro		SATO, Ikuo
	18. Plant Immunology	Studies on the molecgular mechanisms of plant immune response in plant-pathogen interactions. Development of a plant vaccine based on the mechanisms.	NADPH oxidase, ROS burst, MAP kinase, Plant immunity, Plant pathology		YOSHIOKA, Hirofumi		
. Plant	19. Information Sciences in Agricultural Lands	Studies to improve agricultural production by analyzing information from field (crop DNA sequences, morphology, physiological characteristics, yield, soil, environment, etc.) by means of informatics/ data science	Agricultural informatics, Soil and rhizosphere microbiome, Genetic diversity, Breeding, Field informatics	MURASE, Jun	DOI, Kazuyuki		NISHIUCHI, Shunsaku SAWADA, Kozue***
Production Sciences	20. Food Economics	Socioeconomic studies on food system, regional resource management and multifunctional roles of agriculture.	Agricultural Economics, Farm Management, Rural Resource Management, Food System	TOKUDA, Hiromi	TAKESHITA, Hironobu		MIURA, Satoshi
	21. Plant Gene Function	Studies on plant gene function and its application.	Rice, Stem elongation, Water tolerance, Molecular breeding	ASHIKARI, Motoyuki			NAGAI, Keisuke
	22. Developmental and Systems Plant Biology	Studies on genomic information for develpment of useful traits of rice and creation of novel plant regulators.	Rice, QTL, GWAS, GA,Structural biology	TSUJI, Hiroyuki	YAMAUCHI, Takaki		
	Plant Genomics and Breeding	Study on plant genomics and breeding to solve various problems of modern society, i.e. environment, energy, food problems, etc.	sorghum, energy crop, QTL, GWAS, heterosis	SAZUKA, Takashi			OKADA, Satoshi
	24. Bioindustry *No applications	Studies on plant grafting and systemic signaling in plants to improve plant resources for future sustainability.	Grafting, long distance signaling in plants, micro devices for plant science GA, Structural biology	NOTAGUCHI, Michitaka		KUROTANI, Kenichi** KASAHARA, Ryushiro**	
	25. Tropical Bioresources	Exploring and evaluating the traits of tropical plant resources for sustainable agricultural development in the tropics responding to diversification of food demand and climate change.	Crops (Sago palm, Rice, Cowpea), Cultivation technique, Environmental stress,	EHARA, Hiroshi			NAKATA, Mana
	26. Genetic Information for Bioresoureces	Aiming at stable crop production under climate change, we conduct research on the extraction and utilization of genetic information related to useful traits from bioresources.	Genetics, Breeding, Rice, Abiotic stress, Stress avoidance	INUKAI, Yoshiaki			
	27. Practical Studies in Africa	Research on environmental response of crop genetic resources and cultivation technology development for improving and stabilising crop production in Africa.	Africa, Crop, Cultivation technology, Practical study, Rice		MAKIHARA, Daigo		
	28. Practical Studies in Asia	Studies on agriculture and rural developmet including natural resources management in Asia for better livelihoods, poverty reduction and food security.	International Cooperation Official Development Assistance Agricultural and rural development		ITO, Kasumi		

^{**}Designated Lecturer

^{***} Designated Assistant Professor (as of October 1, 2023)

					S	taff	
Department	Laboratory	Area of Research	Research Key Words	Professor	Associate Professor	Lecturer	Assistant Professor
	29. Animal Genetics and Breeding	Studies on the genetic basis of qualitative and quantitative traits in mammals and birds; evolutionary genetics research of animals using genetic engineering such as genome editing; evaluation, conservation and utilization of animal genetic resources; and development of new laboratory animal models for human disease and biological functions.	qualitative (Mendelian) traits, quantitative traits, evolutionary genetics, developmental animal genetic engineering, livestock resources, poultry, laboratory animal models	SUMIYAMA, Kent	ISHIKAWA, Akira		YAMAGATA, Takahiro
	30. Genome and Epigenome Dynamics	Epigenetic regulatory systems for transposons and genes in vertebrates. Epigenome regulation during germ cell development. Genome-epigenome interactions during evolution. Mechanism of cancer cell growth inhibition by activation of transposons.	Epigenetics, Germ Cells, iPS cells, Transposable elements, Trangenerational Inheritance, Diabetes, Cancer	ICHIYANAGI Kenji			OHTANI, Hitoshi
	31. Animal Morphology	Formation and deformation of the traits in vertebrates. Viral endogenization and the roles of the viral-derived element in vertebrates. Transgenerational epigenetic inheritance (TEI).	morphology, molecular genetics, reproductive system, Vertebrates	HONDO, Eiichi			IIDA, Atsuo
	32. Animal Integrative Physiology	Understanding the regulatory mechanisms of circadian and seasonal rhythms in vertebrates. Development of transformative bio-molecules that improve animal production and human health. Studies on physiological regulation of gene expression and release of growth factors in birds.	Seasonal Rhythm, Circadian Rhythm, Growth Hormone, Comparative Biology, Chemical Biology	YOSHIMURA, Takashi	OHKAWA, Taeko	KON, Naohiro**	TSUKADA, Akira NAKAYAMA, Tomoya*** CHEN, Junfeng***
3. Animal Sciences	33. Animal Reproduction	Basic studies on the neuroendocrinological mechanism regulating animal reproduction and its application to animal production and drug discovery.	Gonadotropins, GnRH, Kisspeptin, Gonads, Brain, Neuroendocrinology	TSUKAMURA, Hiroko	UENOYAMA, Yoshihisa INOUE, Naoko		
	34. Animal Nutrition	Studies on the metabolic properties of nutrients (amino acids and vitamin C etc.) and their physiological functions in avian and mammalian species. Analysis of the uptake mechanism of biomolecules into avian eggs and its application to production of valuable protein.	Nutritional factors, Animal disease model, Metabolic diseases, Fatty liver, Egg production	MURAI, Atsushi			FURUKAWA, Kyohei
	35. Animal Production Science	Studies on regulatory mechanism of physiological functions in ruminants and its utilization for animal production.	Reproduction, GnRH, Uterine function, Ovarian activity, Heat stress	OHKURA, Satoshi	MATSUYAMA, Shuichi NAKAMURA, Sho*		
	36. Avian Bioscience	Functional genomics-based identification of genes that control useful phenotypes of birds. Production of genetically mannipulated birds for model animals and industrial use.	Animal model, Genetic resource, Biophrmaceutical production	NISHIJIMA, Ken- ichi			OKUZAKI, Yuya
	37. Fish Biology	Morphological, physiological, and behavioral studies of the brain, sensory receptors, motor systems, and peptidergic neurons in aquatic animals.	fish, nervous system, sensorimotor circuit, peptidergic neurons, behavior	YAMAMOTO, Naoyuki	ABE, Hideki		GOTO, Maki HAGIO, Hanako***
	38. Sericulture and Entomoresources	Molecular mechanisms of baculovirus infection, baculovirus-host interaction and antiviral responses in insects.	Insect pathology, Baculovirus infection, Antiviral response, Host range determination	IKEDA, Motoko			HAMAJIMA, Rina
	39. Applied Entomology	Studies on the development of insect pest management methodology via physiological and molecular approaches.	Insect hormone and pest management		MINAKUCHI, Chieka		
	•	* Designated Associate Professor	•		•		•

^{*} Designated Associate Professor

(as of October 1, 2023)

^{**} Designated Lecturer

^{***} Designated Assistant Professor

Department	Laboratory	Area of Research	Research Key Words	Duef	Associate	taff	Assistant
	,		,	Professor	Professor	Lecturer	Professor
4. Applied Biosciences	40. Organic Chemistry	Bioorganic studies on naturally occurring organic molecules possessing novel structure and biological activity: development of new synthetic methodologies, total synthesis of natural products, elucidation and control of the biofunctions.	organic synthesis, natural products, chemical biology, molecular design	NISHIKAWA, Toshio			MIYASAKA, Tadachika
	41. Bioactive Molecules	Studies on identification, action mechanisim, and application of bioactive molecules produced by plants and microorganisms. Mechanistic analysis and application of carbohydrate-binding small molecules.	natural products, antibiotics, carbohydrates, peptides		NAKAGAWA, Yu	KONDO, Tatsuhiko	
	42. Chemical Biology of Natural Products	Isolation, structure determination, synthesis, biosynthesis, and modes of action of bioactive natural products that regulate biologically and physiologically intriguing phenomena. Anesthetic substances from venomous mammals, and key substances for marine symbiotic relationships. Development of new analytical methods for target molecules using fluorescent probes.	natural products, chemical biology, chemical probe, mode of action, toxins, symbiosis	KITA, Masaki	TSUNEMATSU, Yuta		
	43. Polymer Chemistry	Studies on controlled syntheses and functions of biomaterials and medical polymers including artificial glycoconjugates, biofunctional polymers and environmentally friendly synthetic polymers.	Biomaterials, Biopolymers, Functional Polymers, Polymer Synthesis, Organic Synthesis	AOI, Keigo	NOMURA, Nobuyoshi		
	44. Applied Enzymology	Mechanistic enzymology of flavin and pyridoxal enzymes. Physiological function of isoprenoid, amino acids, and vitamins. Microbial and enzymatic production of useful substances. Lipid biosynthesis in Archaea.	enzyme, isoprenoid, archaea, D-amino acid, pyridoxal phosphate	HEMMI, Hisashi	ITO, Tomokazu		
	45. Molecular Biotechnology	Molecular bioengineering for novel biomolecules, bioprocesses and analytical processes. Currently, novel monoclonal antibody screening, single molecule technology for protein engineering, and the mechanism of translation-enhancing peptide are major research topics.	Bioinformatics, Enzyme engineering, Protein Engineering, Antibody Engineering, Next Generation Sequencing, High-throughput Screening	NAKANO, Hideo		DAMNJANOVIC, Jasmina	KATO, Teruyo
	46. Soil Biology and Chemistry	Studies on the microbial population, and the chemical and biological processes occurring in the paddy field ecosystem.	Agricultural land, Biogeochemical cycles, Microbial ecology, Microbial physiology, Microbial taxonomy	ASAKAWA, Susumu	WATANABE, Takeshi		
	47. Applied Microbiology	Molecular and chemical genetic studies on gene regulation of agriculturally and industrially important microorganisms, especially filamentous fungi.	Filamentous fungi, Food microiology, Polysaccaride-degrading enzymes, Transcriptional regulation, Secondary metabolites	KIMURA, Makoto			MAEDA, Kazuyuk
	48. Food and Biodynamics	Chemical biology of electrophilic ligands, such as lipid peroxidation products and functional food molecules.	Oxidative stress, Covalent modification of proteins, Functional foods, Lifestyle-related diseases, Extracellular vesicles	SHIBATA, Takahiro			NAKASHIMA, Fumie
	49. Molecular and Cellular Regulation	Biochemical and molecular cell biological studies on signal transduction, intracellular traffic, gene expression regulation in animal cell differentiation, growth and cell death.	Ca2+-binding proteins, Cell death, Cell growth, Membrane traffic, Molecular interactions		SHIBATA, Hideki	TAKAHARA, Terunao	
	50. Molecular Bioregulation	Biochemistry and molecular cell biology on the biosynthesis and dynamics of proteins, nucleic acids and their complexes in mammals, and on the functions and regulations of these molecules in living organisms, including cell proliferation and tissue differentiation. Specifically, we are studying mammary gland development and milk synthesis, translational control including ribosomes, and the epithelial responses to bioactive factors.	Mammary gland, Milk, Ribosome, Epithelial cell		NADANO, Daita		OHSHIMA, Kenji
4. Applied Biosciences	51. Glyco-Life Science	Interdisciplinary studies between bioagricultural, medicinal, and pharmaceutical sciences on regulatory mechanisms for glycans-involved phenomena to attain better health, environment, and food	Glycocalyx, glycans, glycosyltransferase, glycosidase, immune system, neural system	SATO, Chihiro			HANE, Masaya
	52. Animal Cell Function	Studies on impacts of metabolic changes of glycans in proteins and lipids at the organism level, using medaka models and their integrated omics including glycomics.	Glycobiology, Sialic acid metabolism, Membrane microdomain, Reverse genetics of Medaka, Glycomics, Glycoproteomics	KITAJIMA, Ken			WU, Di
	53. Animal Cell Physiology	Studies on fucntions of extracellular matrix, transporter proteins, and signal transduction.	Bone, Heart, Molecular Biology, Electrophysiology, Imaging		MATURANA, Andrés Daniel	NIIMI, Tomoaki	
	54. Nutritional Biochemistry	Nutritional regulation of enzyme and gene expression in mammals. Molecular mechanisms for hepatocyte differentiation in 3-dimensional culture systems. Physiological significance of liver circadian rhythm. Metabolism and physiological functions of branched-chain amino acids.	Gene expression, Liver clock, Branched- chainamino acids (BCAA), Muscle		ODA, Hiroaki	KITAURA, Yasuyuki	
	55. Alimentary Neuroscience	Omnivorous animals including human evaluate and select specific foods among several candidates before consumption. Our goal is the identification of the neural mechanism for food choice.	Brain, Gustatory, Food preference, Appetite	NAKAJIMA, Ken-ichiro			RATTANAJEARAK L, Nawarat***

5	6 Plant Signaling	Studies on molecular mechanisms underlying optimization of plant growth and development in response to environmental cues with focusing on phytohormone function.	Nutritional response, Plant hormones, Growth regulation, Nitrogen, Iron	SAKAKIBARA, Hitoshi	KIBA Takatoshi	HASHIMOTO-	BELLEGARDE, Fanny***
5	7. Biochemistry	Biochemical, molecular genetic, and microscopic studies on regulatory mechanisms of development of plant organs such as flowers, pollen grains, and roots. Studies on molecular functions and regulation of membrane proteins that support photosynthesis and inorganic nutrient assimilation in plants and cyanobacteria.	Flower development and anthesis, Pollen morphology, Meristem organization, Jasmonic acid, Transcription factors, Membrane transporter		ISHIGURO, Sumie		MAEO, Kenichiro MAEDA, Shin-ichi NAKANISHI, Yoichi
5	8	Biochemical, cellular and genetic studies on molecular mechanisms of chlorophyll biosynthesis, nitrogen fixation, circadian rhythm and phytohormone signal transduction in cyanobacteria and plants.	Cyanobacteria, Chlorophyll biosynthesis, Nitrogen fixation, Plants, Circadian clock, Plant hormone signal transduction, Gene regulation	FUJITA, Yuichi	YAMASHINO, Takafumi		YAMAMOTO, Haruki
5	9 Plant Cell Function	Molecular mechanisms of plant growth and development, and their regulation in response to environmental signals. Studies on the construction of artificial membrane-less organelles in plant cells.	meristem, endosperm, stress, seed dormancy, jasmonic acid, membraneless organelles		UEGUCHI, Chiharu TAKEDA, Shin		
6	0 -	Understanding plant circadian rhythms and seasonal behaviors with multi-omics approaches. Improvement of plant biomass and productivity by controlling key genes for circadian and seasonal behaviors.	Plant circadian clock, Transcriptional network, Bioactive small molecules.	NAKAMICHI, Norihito			MURANAKA, Tomoaki
ε	Plant Metabolic 1. System	Studies on biological functions and regulatory mechanism of plant metabolism.	amino acids, environmental stress, mathematical modelling, metabolome, specialized metabolites	HIRAI, Masami			
ε	2. Metabolic Balance of Ecosystem	Methodology development of analysis of metabolic balance of ecosytem and its application to applied sciences.	homeostasis, environmental analysis, complexity, NMR, data science, machine learning	KIKUCHI, Jun			

^{**}Designated Lecturer

^{***}Designated Lecturer

***Designated Assistant Professor

(as of October 1, 2023)